Monday, December 5, 2016

On Killing spinors in general dimensions

The following property is true in four spacetime dimensions [1] [2]

If the electromagnetic field $F_{ab}$ satisfies Maxwell's equations \begin{equation*} \nabla_{[a}F_{bc]}= 0 \quad\text{and}\quad \nabla^a F_{ab} =0 \end{equation*} and there is a spinor $\psi$ such that \begin{equation}\label{eq:20161115b} (\nabla_{\mu} + i \sqrt{4 \pi} \not F \gamma_{\mu} ) \psi = 0 \end{equation} and $i \bar \psi \gamma^{\mu} \psi$ is time-like

then the Einstein equations are satisfied as well: \begin{equation*} R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = 8 \pi T_{\mu\nu} \end{equation*}

This property (property A from now on) can for example be used to obtain the metric and electromagnetic field of the Israel-Wilson-Perjés (IWP) black holes. Because I wanted to generalize the IWP black holes to higher dimensions, I wanted to find the generalization of property A in higher dimensions.